A hierarchical and regional deep learning architecture for image description generation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Deep Learning Architecture for Testis Histology Image Classification

Unlike other histology analysis, classification of tubule status in testis histology is very challenging due to their high similarity of texture and shape. Traditional deep learning networks have difficulties to capture nuance details among different tubule categories. In this paper, we propose a novel deep learning architecture for feature learning, image classification, and image reconstructi...

متن کامل

Hierarchical Deep Learning Architecture For 10K Objects Classification

Evolution of visual object recognition architectures based on Convolutional Neural Networks & Convolutional Deep Belief Networks paradigms has revolutionized artificial Vision Science. These architectures extract & learn the real world hierarchical visual features utilizing supervised & unsupervised learning approaches respectively. Both the approaches yet cannot scale up realistically to provi...

متن کامل

Hierarchical Deep Recurrent Architecture for Video Understanding

This paper 1 introduces the system we developed for the Youtube-8M Video Understanding Challenge, in which a large-scale benchmark dataset [1] was used for multilabel video classification. The proposed framework contains hierarchical deep architecture, including the framelevel sequence modeling part and the video-level classification part. In the frame-level sequence modelling part, we explore ...

متن کامل

An Architecture for Deep, Hierarchical Generative Models

We present an architecture which lets us train deep, directed generative models with many layers of latent variables. We include deterministic paths between all latent variables and the generated output, and provide a richer set of connections between computations for inference and generation, which enables more effective communication of information throughout the model during training. To imp...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition Letters

سال: 2019

ISSN: 0167-8655

DOI: 10.1016/j.patrec.2017.09.013